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ABSTRACT

Arbitrary Lagrangian Eulerian (ALE) methods have existed for several decades. However,
three-dimensional multi-material arbitrary Lagrangian Eulerian (MMALE) methods for
unstructured grids are relatively new. MMALE algorithms provide the framework to mod-
el sections of a simulation as either Lagrangian, ALE, or Eulerian. In addition, sections of
a simulation can switch in time between mesh motions as the distortion of the problem
dictates. The MMALE method provides the accuracy of Lagrangian mesh motion and the
robustness of Eulerian mesh motion within the same framework. Extending this method to
unstructured grids allows for more accurate representation of curved surfaces and complex
geometries. This paper examines the algorithms required for the MMALE method and the
extensions to these algorithms for unstructured meshes. In addition, second order behavior
of the MMALE algorithm as it exists in the high energy density physics code ALEGRA is
demonstrated, along with a practical example of its usefulness.
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1. Introduction

One driving force for the use of Multi-Material Arbitrary Lagrangian-Eulerian (MMALE
methods at Sandia National Laboratories (SNL) is a critical need to accurately mode
nomena and exact geometry associated with the large strain rate requirements of ine
confined fusion (ICF). The ALEGRA code has been developed to apply MMALE in I
applications. However, the MMALE method in ALEGRA1 has also been used to mode
many large strain rate (shock physics driven) events in the areas of shock-activated
performance, weapon safety experiments, and armor and anti-armor applications. In
tion, the MMALE algorithms have been formulated to be physics independent and
rently support radiation transport, magneto-hydrodynamics, electrostatics and v
methods for incompressible flow.

The explicit finite element formulation of the governing equations used by ALEGRA
sults in an inherent time step size limitation, Courant Limit, in order to maintain a st
solution. In the Lagrangian formulation the elements that form the geometry of the p
lem become distorted and as a result, the time step size must usually be reduced. A
point, the time step size may become too small to economically continue with the sim
tion. Arbitrary Lagrangian Eulerian (ALE) methods2 can be used to reduce mesh disto
tion thus increasing the time step size. The MMALE approach allows for mult
materials in an element and therefore allows for additional flexibility over the traditio
ALE method. Mesh distortion can be totally eliminated by using the Eulerian appro
However, Eulerian methods may be too diffusive and are computationally very expen
The MMALE approach in ALEGRA allows for Lagrangian, Eulerian and smoothing m
motion within a single framework. Mesh smoothing can approach an Eulerian formula
but has the advantage of being performed less frequently. After moving the mesh (re
step) a remapping of variables to the new mesh locations is performed. Second order
rate interface reconstruction and advection methods are essential for accurate rema

Figure 1 presents a flowchart of the individual modules that make up the MMALE a
rithm and a high-level overview of the discussion of this paper. Section 2 describe
data structures that support the use of the MMALE algorithm in an unstructured finite
ment code such as ALEGRA. Section 3 describes in detail, the remeshing and rema
phases of the MMALE algorithm.
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2. Initialization

Within the MMALE method, a number of special data structures and object attributes are required t
vide flexibility to the programmer and the user. Finite elements are grouped into “blocks”, element
for boundary conditions are grouped into “side sets”, and nodes for boundary conditions are group
“node sets”. A block must consist of a common element type; however, a block can have a number
ferent materials. Elements within a block do not have to be topologically connected. ALEGRA ad
additional structure called adomain that is a grouping of all blocks.

2.1 Node and Element Pointer Based Topology

A major aspect of any ALE method is the data structures available to easily access node and e
neighbor information. In most finite element approaches, the only topological information that is sto
the element connectivity list. Traditional ALE methods have more of a finite difference or finite vol
flavor. When ALE methods are added to a finite element code, as we have done, new topology dat
tures are required. Many of the algorithms that determine new node locations require that a node’s
node neighbors be known. Moreover, methods for remapping element and vertex centered quantit
velocity) require information from neighboring elements. For structured meshes, most ALE formula
use special ordering for node and element neighbors and store these orderings in integer lists.3 For un-
structured meshes, these lists vary in size due to the arbitrary nature of the element-to-element con
ity. ALEGRA uses a more modern approach. Elements and nodes in ALEGRA are C++ objects. W
these objects, pointers to other objects are stored. The “pointer” approach has the same memory a
efficiency as the list approach but it is much more flexible and robust. Figure 2, depicts the struct
the “pointer” topology.

2.2 Element-Node Connections

Within ALEGRA, each element stores an array of pointers for the nodes that form its shape. The n
of node pointers is determined by the element type (e.g. HEX = 8). The node pointers are stored
each Element object in a predefined order. Each Node object, on the other hand, stores an array
ment pointers for the Element objects that are connected to it. The number of element pointers is
mined by the connectivity and ranges from 1 to n where n can be arbitrarily large. Due to the arb
nature of this array size, a first pass is made through the element topology to determine the numbe
ements connected to each node. Next, the element pointer array for each Node object is alloca
lastly the memory location for each Element object (i.e., the element pointer) connected to the n
stored in the element pointer array.

2.3 Element-Element Connections

Each Element object in ALEGRA contains an array of Element object pointers for the elements that
a common face. In ALEGRA, this is the definition of an element’s element neighbors. For quadrilat
an element has at most four element neighbors while in hexahedrals an element has at most six
neighbors. Initially, these arrays are allocated to the maximum number of neighbors and the addres
the pointers are set to the Element object’s own address. Once all the neighbors have been identifi
element pointer that points back to the element itself dictates that the face is a physical boundary of
formal mesh. This allows for easy tagging of reflective or voided boundaries for the advection logic
33
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es for each element are determined from the local canonical node ordering for each elemen
Element neighbors for each element are tagged as {left, front, right, back, bottom, top} faces. Fro
ordering, it is obvious which face is opposite to a given face and thus one can find a neighbor’s ne
which is required for some advection algorithms.

2.4 Node, Element, Block, and Domain Attributes

The ALE algorithms in ALEGRA are optimized for CPU and memory efficiency. To accomplish t
each Node and Element object contain attributes that are used throughout the remesh/remap algo
addition, a number of attributes are specified by the user for blocks and the domain which provide a
of controls. Through the initialization phase, the user specified block and domain attributes help
mine many of the element and node attributes. For example, each block of elements can be spec
Lagrangian, SMALE, MMALE, or Eulerian. Each ALE block of elements has user defined “triggers
tagging nodes to be moved in order to reduce the distortion in the mesh, sometimes referred to a
smoothing. Eulerian blocks can specify the directions to be Eulerian leaving unspecified directions
have in a Lagrangian fashion.

The Node Type attribute for each node is set through a combination of the Block and Domain attri
The algorithm uses the order of block, face (side set), and edge (node set) in determining a node
along with the inequality provided in Equation (1). In other words, for a single node, a setting de
from an element block will be overwritten by a derived setting for a side set which in turn can be
written by the edge setting that applies to the node. In addition, some nodes will be located on inte
between blocks, side sets and node sets that have different Mesh Type settings. To properly hand
cases, the following precedence is used:

Lagrangian > SMALE > MMALE > Eulerian (1)

3. MMALE Methods and Algorithms

The MMALE algorithms in ALEGRA involve identifying nodes that need to be moved based on dis
tion criteria, relocating nodes to relieve the detected distortion, and remapping the element and nod
ables while conserving global quantities. These steps and their substeps are described in the pa
that follow.

3.1 Remesh

The remeshing phase of the ALE method requires determining new locations for the nodes that
partially alleviate their associated elements’ distortion. Figure 3 demonstrates how Lagrangian, AL
Eulerian nodes behave through the remesh step. Eulerian nodes are moved back to their position
Lagrangian step and Lagrangian nodes are not considered for movement. However, remeshing
nodes involves three steps. After the Lagrangian step, a list of nodes that meet a user specified di
criteria for being moved is created. Next, new positions are calculated for this list of nodes. Lastly, t
tual movement of the selected nodes is limited to some fraction of their calculated movement, for re
specified below. The details of these three steps are presented in the following subsections.
44
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3.1.1 Criteria for Moving an ALE Node

ALEGRA’s criteria for moving a node is that given by Barton in the HEMP4 code as ex-
tended by Benson. The criteria listed by Barton can be summarized with two tests: a
gle test and a volume test. For every node, the angles that are formed by the vectors
by element edges that originate at the node are calculated. The ideal situation would
all of the angles to be 90 degrees. The calculation of the angles begins by determinin
length of the sides and the area of the triangles formed in each element by the node
two closest nodes. An example of the triangle formed by two vectors with the verte
node 1 in shown in Figure 4.

The angleθ is given by5

 or (2)

and the area of triangleabc is given by5

(3)

where

(4)

These calculations are performed for each of the elements that surround the node. In
dimensions, each of the three faces that connect to a node for a given element are ch
To determine if a node should move the following minimum angle (maximum of the
sine of the angle) is used as a measure of distortion and is given as:4

(5)

where the list of angles represents the angles formed by edges around a node. A v
measure of distortion is found by comparing the minimum to maximum volumes of al
ements that are connected to a node. This is given as

(6)

The user selects the cutoffs for Equations (5) and (6). A user specified setting of ze
cosine(90) for Equation (5) will cause every node to be selected for remeshing with
block. Likewise, a user specified setting of 1.0 for Equation (6) will cause every node
selected for remeshing. Note that due to the behavior of the cosine function, Equatio
is valid for both acute and obtuse angles if the absolute value is used.

θsin 2
A
bc
------= θ b c•

bc
-----------acos=

A s s a–( ) s b–( ) s c–( )=

s
1
2
--- a b c+ +( )=

Rθ max θ1cos θcos 2 θcos 3 …, , ,( )=

RA min V1 V2 V3 …, , ,( )
max V1 V2 V3 …, , ,( )
--------------------------------------------------=
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3.1.2 Logic for tagging nodes that are Lagrangian, Eulerian, or ALE

When a node is determined to be remeshed, elements and nodes that are topolo
connected to the node are affected. These elements and nodes will participate in the
tion schemes and processing only these objects is an important optimization. If all n
are tagged to be moved, all elements and nodes are tagged as AFFECTED. This is th
for either pure Eulerian calculations or in a user defined re-smoothing of the entire m
Otherwise, if a node is tagged to be moved and it is an ALE node, all of the elemen
tached are tagged as being ALE elements. Lastly, all nodes attached to elements w
tagged as AFFECTED are also tagged as being AFFECTED.

With all elements and nodes tagged with the proper attributes, the new location fo
nodes must be determined. The updating of coordinates is shown in Figure 3 The v
New is used to hold the new node locations and has been initialized to the value ofCur-
rent from the previous time step. For Eulerian nodes,New is set to the location from the
last remap. Most of the time this is the original location. Before nodes are moved, sp
cases must be dealt with. ALE nodes setNew to Current . For Eulerian nodes in only one
direction, only the directional component ofNew is set toCurrent from the last remap. At
this point, ALE nodes can be smoothed and theNewvector will hold the new coordinates

3.1.3 Mesh Smoothing

In order to perform the remeshing phase of the ALE technique, an algorithm must be
that determines where a node is to be moved. There are many techniques for de
where to move a node. ALEGRA contains methods based on equipotential solutio
technique based on averaging element centers, and a method by Budge6 that attempts to
preserve mesh orthogonality. Of these methods, only the equipotential solver will be
cussed in detail.

3.1.3.1 Applying Equipotential Solutions to the Mesh

One of the most successful mesh smoothing methods and the primary method u
ALEGRA is the method based on Winslow’s work with equipotential smoothing.7 Win-
slow’s method is based on inverting Laplace’s equation. If one were to generate a
based on this method, the grid lines would be the characteristic lines of Laplace’s e
tion. In addition, this method very aggressively moves nodes in the attempt to equali
ement volumes.

As previously mentioned, the remapping algorithm is based on equipotentials gene
by solving the inverted Laplace’s equation. This is given as7

(7)

(8)

where

αxφφ 2βxφϕ– γ xϕϕ+ 0=

αyφφ 2βyφϕ– γ yϕϕ+ 0=
66
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(10)

(11)

These equations have been used for most two-dimensional logically rectangular
ALE codes. Using second order central differencing techniques, Equations (7) thr
(11) can be simplified to give

(12)

(13)

where

(14)

(15)

(16)

and equations for the y coordinate are similiarly developed.

Equations (12) through (13) only work for nodes surrounded by four elements and c
easily extended to work in three dimensions for nodes only surrounded by eight elem
This can be a serious limitation for unstructured mesh codes. To overcome this limita
Robert Tipton of Lawrence Livermore Laboratory, reformulated Winslow’s approach
ing a variational approach.8 To date, Tipton’s derivations remain un-published; however
summary of his approach is given below. Tipton’s algorithm forms the foundation of
smoothing algorithms in ALEGRA.

Tipton begins with the integral

(17)

Using the variational principle, Equation (17) can be shown to result in the following v
ational equation

(18)

α xϕ
2 yϕ

2+=

β xφxϕ yφyϕ+=

γ xφ
2 yφ

2+=

x'
1

2 α γ+( )
--------------------- α x4 x8+( ) γ x2 x6+( ) 1

2
---β x3 x5– x7 x9–+( )–+ 

 =

y'
1

2 α γ+( )
--------------------- α y4 y8+( ) γ y2 y6+( ) 1

2
---β y3 y5– y7 y9–+( )–+ 

 =

xφ
1
2
--- x4 x8–( )=

xϕ
1
2
--- x2 x6–( )=

xφϕ
1
4
--- x3 x5– x7 x9–+( )=

I
1
2
--- x3W x( ) f∇

2
d∫=

δI
δf
----- W f∇∇•– 0= =
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which Tipton demonstrates is the correct form of Laplace’s equation in variational f
with an arbitrary weight functionW(x). Using finite element formalisms,f(x,y,z)can be
represented in an expansion of shape functions:

(19)

Substituting Equation (19) into Equation (17) yields

(20)

whereMαβ represents the classical stiffness matrix with an arbitrary weight function.
ing Equation (18), the derivative ofI with respect to eachfα must vanish which results
from Equation (20) as

(21)

As with the Winslow method, Equation (21) is solved iteratively. Expanding Equation (
and solving forfα, one gets

(22)

Continuing with the finite element approach,Mαβ is discretized for elements and become

(23)

At this point, no distinction has been made with respect to dimensionality or element
The shape functions for the element will determine these attributes. The use of shape
tions requires a transformation from Euclidean coordinates to isopara
ric coordinates . This transformation changes Equation (23) to

(24)

where represents the twice-contravariant metric tensor for the transformation from
to  andJ is the Jacobian. For convenience, define

 and (25)

f x y z, ,( ) f αNα x y z, ,( )
α
∑=

I
1
2
--- f α f β x3W Nα∇ Nβ∇•d∫

αβ
∑ 1

2
--- Mαβ f α f β

αβ
∑= =

f α∂
∂I

Mαβ f β
β

∑ 0= =

f α
1

Mαα
----------- Mαβ f β

β α≠
∑–=

Mαβ Mαβ
el

el
∑ x3W Nα

el∇ Nβ
el∇•d

elel

∫∑= =

xi{ } x y z, ,{ }=

ξi{ }

Mαβ
el ξ3WJ g̃ij ξi∂

∂Nα

ξ j∂
∂Nβ

i j
∑d

el
∫=

g̃ij xi{ }
ξi{ }

aij J2g̃ij= Wel wel J=
88
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Given a set of shape functions, Equation (24) can be determined for each element a
sembled into Equation (22) for new node positions. Since node positions are need
Equation (24), a Jacobi iteration procedure is used.

In solving Equation (24) for quadrilaterals, the classical checker-board mode must b
solved. This unphysical mode is the result of having four degrees of freedom in the p
cal space while the solution space for Laplace’s equation has only three. Tipton sug
setting the fourth eigenvalue of the matrix represented by Equation (24) to

(26)

With this selection, the stiffness matrix becomes

(27)

which, as Tipton points out, is the well known and very successful Pert9 diffusion operator.
Equation (27) is used very effectively in ALEGRA for two-dimensional smoothing.

For hexahedrals, the solution of Equation (24) is more complicated, since there are
physical modes and four unphysical modes. Tipton suggests setting the last four eig
ues to

(28)

With these selections, the stiffness matrix for the hexahedral element becomes

(29)

where taking advantage of the fact that the unit vector is in the null space of M,

λ4 a11 a22+=

M f
1
2
---wel

a11 a12 a22+– a22– a12 a– 11

a22– a11 a12 a22+ + a– 11 a– 12

a12 a– 11 a11 a12 a22+– a22–

a– 11 a– 12 a22– a11 a12 a22+ +

=

λ5 a11 a22 a13 a23+ + +=

λ6 a22 a33 a12 a13+ + +=

λ7 a11 a33 a12 a23+ + +=

λ8 a11 a22 a33+ +=

M
wel

4
-------=

m11 a– 11 a12– a22– a33– a13– 0 a23–

m22 a22– a12 a13 a33– a23– 0

m33 a– 11 0 a23 a33– a13

m44 a23 0 a13– a33–

m55 a– 11 a12– a22–

m66 a22– a12

m77 a– 11

m88
99
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(30)

For diagonal coupling of nodes 1 and 7, Tipton suggests setting the last four eigenval

(31)

Both Equations (28) and (31) are available in ALEGRA.

Finding the coordinates, , for all the nodes that satisfy Laplace’s equation is an i
tive procedure. Thus, Jacobi iteration is used to solve Equation (24). In ALEGRA, the
is allowed to control the number of iterations performed on Equation (24). Generally, A
algorithms are only interested in making small changes to the mesh and therefore the
solution to Equation (24) is not desired since it may violate a Courant limit by moving
nodes to far.

3.1.4 Mesh Smoothing Examples

There are a multitude of smoothing combinations for both interior and exterior nodes
addition, the behavior of nodes that lie among different mesh types (Lagrangian, SMA
MMALE, Eulerian) can greatly influence the results of smoothing operations. Examp
are provided here for the equipotential Tipton smoother, both with and without boun
smoothing options activated. Figure 5 displays the initial 10x10 graded rectangular m
while Figure 6 shows the result of 100 iterations of the Tipton smoother. The algorithm
attempting to equalize volumes and in this case, the Tipton smoother is identical to t
Winslow solution. Boundary constraints in the form of non-moving boundary nodes p
vent the method from equalizing volumes.

3.1.4.1 Boundary Node Smoothing Options

ALEGRA is designed to allow the user to specify node smoothing behavior on ANY n
set. In contrast, unless a user specifies a boundary as being ALE, it cannot be smoo
For the smoothing to work well, the nodes in a node set must fall on a straight line fo
edges, or on a xy, xz, or yz plane for faces. ALEGRA cannot currently smooth curved
faces.

Unless specified otherwise, boundary nodes are defined to be Lagrangian in
LAGRANGIAN, SMALE, and MMALE meshes, and Eulerian in EULERIAN meshes.
The user can specify the behavior of ANY node set as LAGRANGIAN, ALE, or EUL
RIAN. Most of the time the user will want to make these specifications on exterior bou
aries, however it is possible to run an entire simulation as Lagrangian and have one

mii mij

j 2=

8

∑–=

λ5 a11 a22+=

λ6 a22 a33+=

λ7 a11 a33+=

λ8 a11 a22 a33+ +=

xi{ }
1010
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For edges, the smoothing algorithm attempts to equally distribute the nodes betwee
end-points. Faces are smoothed with the two-dimensional variations of the smoothe
described above. ALEGRA uses the order of interior, face and edge in applying the
smoothing techniques. Due to the aggressive behavior of smoothing combinations, 
user can control the amount of nodal movement that results in the remesh step.

3.1.4.2 Boundary Node Smoothing Examples

ALEGRA is designed to allow the user to specify node smoothing behavior on ANY n
set. This can greatly relieve the distortion in the mesh. But, the current algorithms in
ALEGRA are limited to straight lines and planar faces. In Figure 7, only the line Y=0
specified as ALE. Within this designation, only the nodes within the end-points are
allowed to move. The algorithm for moving these nodes basically moves the nodes 
middle of the two neighbor nodes, forcing the nodes to become equally spaced. In c
parison with Figure 6, one can see that the mesh in Figure 7 is becoming more optim
with the relaxation of the y=0 boundary. In Figure 8, all of the boundary nodes are s
fied as ALE nodes and the results are more dramatic. Currently, the code does not a
for curved lines or corners to be smoothed. These features will be added in the futur
it is possible that these features can be added so that conservation is maintained fo
simulations. Aggressive boundary smoothing will require knowledge or construction 
the deformed geometry.

3.1.4.3 Smoothing examples in SMALE and MMALE blocks.

This section demonstrates how nodes connected among a mixture of mesh types be
during remeshing. These nodes are called interface nodes. The general rule is that a
face node is LAGRANGIAN if it is connected to a Lagrangian or SMALE mesh, ALE
connected to either all MMALE meshes or a mixture of MMALE and EULERIAN
meshes, and Eulerian if connected to only EULERIAN meshes. The next sections w
provide examples to better clarify the behavior of interface nodes under mixed mesh
conditions. The examples below begin with the initial conditions shown in Figure 5; h
ever there are four mesh blocks that make up the domain. Meshes (blocks) one thro
four have a common point at x = 0.5 and y = 0.5 and the mesh blocks 1 through 4 a
located in quadrants 3, 4, 1, and 2, respectively. In addition, all boundaries are flagg
ALE.

In the first example, a four mesh block problem, where each mesh block is skewed, 
modeled as four SMALE meshes. Based on the above discussion, the interface node
behave Lagrangian and thus cannot be smoothed. This behavior is depicted in Figu
where one can see that each individual mesh is smoothed where as the interface nod
held in place throughout the smoothing operation. In the next example, the behavior
interface node connected to a SMALE mesh and a MMALE mesh is investigated. In
ure 10, mesh 1 is SMALE while meshes 2 through 4 are MMALE. As expected, the 
face nodes between the MMALE meshes are smoothed while the interface nodes be
1111
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the SMALE mesh and the MMALE meshes are Lagrangian and thus are not smooth
The last example shows the behavior of nodes between MMALE and EULERIAN
meshes. In Figure 11, mesh 1 is Eulerian while meshes 2,3, and 4 are MMALE. As 
can see, the interface nodes are smoothed.

3.1.4.4 Three Dimensional Smoothing Example

Effective smoothing in three-dimensional problems requires more consideration of th
effects of boundaries. Visualizing the effects of three-dimensional interior smoothing
difficult and without boundary smoothing can be very constrained. Many three-dimen
sional problems have planar surfaces that align with the xy, xz or yz planes. Applying
rior and boundary surface smoothing can be very effective for problems that have th
features. One such example is shown in Figure 12. In this problem, a plasma annulu
compressed toward the axis of symmetry. A voided region exists in the interior of the
plasma annulus. Without mesh smoothing the voided region cannot “get out of the wa
the impinging plasma and the problem would in effect stop due to the collapse of the o
ring of voided elements. To facilitate the simulation of the problem, Tipton smoothing
performed on the interior of the volume and on both xy planar surfaces. Without wei
Tipton smoothing would push the nodes outward which would be worse than runnin
without smoothing. However, an inverse radius weight is used in conjunction with the
ton smoother which in effect pulls the voided nodes toward the axis of symmetry. Th
approach has proven very effective in running magnetically driven axial plasma pinc
(z-pinches).

3.1.5 Limiting Node Movement

As mentioned in the discussion above, solution to the mesh smoothing equations
tained by an iterative approach. During the iterations, nodes can be moved in a m
that causes an element to “over empty” and thus result in a negative volume. More
overly aggressive node movement can cause unnecessary diffusion, due to interpo
errors inherent in the advection method. To prevent these undesirable effects, the us
control the percent of node movement from its original location to the location determ
from the smoothing.

3.2 Remap

The remap step in ALEGRA uses second-order advection methods for both node an
ment variables, high resolution interface reconstruction and one-dimensional passes
rently, ALEGRA performs a remap on unstructured quadrilateral and hexahedral me
The remap step involves several substeps that include:

1) Determine volume fluxes

2) Advect element centered non-material variables

3) Advect node centered volume dependent variables

4) Determine material fluxes via interface reconstruction
1212
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5) Advect element centered material variables

6) Advect node centered mass dependent variables

Steps 2 through 6 are performed in sequence as alternating direction one-dimen
passes. This approach fosters proper corner coupling, the movement of material dia
ly in the mesh. In the sections that follow, the algorithms and methods used in ste
through 6 will be described in detail. In addition, the effects of an unstructured mes
these methods will be discussed.

3.2.1 Determining Volume Fluxes

The first step in any advection scheme is to determine the volume fluxes created by
movement. When a node is moved, volume fluxes are generated through the sides
elements to which the node is attached. The volume flux through an element side is
by the volume of the quadrilateral in two dimensions, or the hexahedron in three dim
sions, that is created from the set of old node positions and new node positions on
face of the element. The volume flux is calculated very much like the volume of an
ment since the CURRENT and NEW coordinates of an element’s face form a sub-ele
For hexahedrons, the volume created by node movement can have bi-linear faces an
the volume must be calculated in the same way as a finite element hexahedron vo
The volume of an element, using finite element terminology, is given as

(32)

where

(33)

is the Jacobian of the transformation from the isoparametric coordinates to the cu
physical coordinates . Now

(34)

where are the coordinates of the element face vertices before and after node move
The are the element shape functions used to represent variable variation within th
ment. Thus

(35)
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Ve Vd
Ωe

∫ J ξ η ζddd

0.5–

0.5

∫
0.5–

0.5

∫
0.5–

0.5

∫= =

J det

ξ∂
∂x

η∂
∂x

ζ∂
∂x

ξ∂
∂y

η∂
∂y

ζ∂
∂y

ξ∂
∂z

η∂
∂z

ζ∂
∂z

εi jk ξi∂
∂x

ξ j∂
∂y

ξk∂
∂z

= =

ξi

xi

xi xiI
e NI=

xiI
e

NI

ξ j∂
∂xi xiI

e
ξ j∂

∂NI=
1313



MultiMaterial ALE Methods in Unstructured GridsMultiMaterial ALE Methods in Unstructured Grids DRAFT

com-
ces
ode in
ount is

sim-
the

el-
vol-
an

sical
ouble
ents

are
h this

de
from
ass-
(36)

Then

(37)

In principle, the matrix has 512 components. In fact, the number of independent
ponents is much smaller, since the matrix is fully antisymmetric. Antisymmetry redu
the independent component count to 168. Furthermore, since one can choose any n
the element as the first node to number, and any of three others as the second, the c
further reduced to 7. These components are

(38)

This permits efficient calculation of the element volume fluxes for three-dimensional
ulations. In two-dimensional calculations, the volume flux is easily calculated from
quadralateral area.

Equation (37) defines the volume flux such that a positive volume flux will occur for an
ement side if the node is moved further into the element’s region. In other words, the
ume flux is assumed to be positive if the volume is leaving the element. As
optimization, negative volume fluxes are set to zero unless they occur on a phy
boundary. This optimization eliminates half of the remap operations and prevents d
counting errors. As a further optimization, volume fluxes are only calculated for elem
marked as AFFECTED by node movement.

With the definition of volume flux given by Equation (32), all fluxes in the neighbors
added to an element’s volume while the fluxes from the element are subtracted. Wit
procedure, the new volume of an element is given by

(39)

wherei refers to an element’s side,ni refers the corresponding neighbor element’s si
andenis the number of element neighbors. The new volume could also be calculated
the new node coordinates. In ALEGRA, Equation (39) is applied in one-dimensional p
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es, ias explained below. As volumes are subtracted from an element, they are adde
neighbor.

Boundaries on a mesh can be specified as either voided or reflective (default). In bot
es, negative volume fluxes are saved. For voided boundaries, void is fluxed into th
ment and for reflective boundaries, the volume flux is partitioned in the ratio of mate
contained in the element.

3.2.2 General Advection Principles

Isotropic advection assumes that the material is advected through all element
simultaneously. Without a very careful geometric implementation using both element
and diagonal neighbors, this approach will fail to advect quantities correctly when
material flow is not aligned with the element faces and is considered a low order me
To overcome this limitation, ALEGRA uses the concept of one-dimensional passes w
permutation that switches the order of the one-dimensional passes each advection
This procedure provides for corner coupling; however, as opposed to a logically rectan
mesh, a finite element mesh does not have a predefined set of directions. In ord
overcome the lack of logical (i,j,k) direction, ALEGRA works in logical space
predefining element face pairs. This approach has been shown to be second-order
the grid is logically rectangular and first-order where the grid is unstructured (e.g. t
elements sharing a node). Such an approach is much more accurate than using an is
method everywhere and, moreover, finite element meshes are mostly logically rectan
with isolated areas of unstructured topology.

In effect, one-dimensional passes view the elements aligned in strips where the “left
“right” advection volumes are processed along with remapping the variables befor
“top” and “bottom”, “front” and “back” advection volumes are processed. This proces
depicted in Figure 13. This corner coupling is not exact but is close enough that most
formulations avoid the alternative nine element stencil. The permutation in direction
each cycle ensures that a given direction is not preferred. Examples of corner couplin
be discussed in section 3.2.3.

Advection algorithms can be expressed in volume or mass coordinates depending
nature of the variable. For example, stress is defined in terms of per unit volume, w
specific internal energy is given in terms of per unit mass. For a volume based varia
newly advected element centered variable is given by

(40)

where the summation is for both faces of the element in a one dimensional pass and
are determined by the type and order of the advection algorithm. Note that in Equ
(40), for a given element face, either∆Vni or ∆Vi will be zero since negative internal ad
vection volumes have been zeroed. For mass based variables, Equation (40) becom
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Equations (40) and (41) work for material variables with the appropriate changes to m
rial volumes or masses and fluxes. From this point on, the equations will be derive
volume-weighted quantities, keeping in mind that the advected quantities may be m
weighted.

More research effort has been expended in finding approximations to than any othe
of ALE algorithms. For element centered advection, ALEGRA may use donor c
Van Leer10, and SuperB11 schemes. Donor cell is the simplest advection method and
first-order since it does not involve evaluating derivatives within an element. The flu
assumed to carry the value of any element-centered variable from which the ma
came. This is analogous to first-order upwinding in finite difference methods. The m
common higher accuracy element-centered advection method used in ALEGR
Van Leer. Van Leer advection can be shown to be both second order and monotonicit
serving. The method requires information from elements ahead and behind the dono
ment. As shown in Figure 14, four slopes can be measured from the element var
plotted in volume or mass coordinates.

In the Van Leer stencil, the slope,  is given as

(42)

where

(43)

If the slopes have different signs, then the slope is set to zero. In effect, sign consis
preserves monotonicity by determining if a maximum or minimum exists in the donor
From Equation (42), one can see that the Van Leer algorithm uses the smallest slope
the slope determined, the fluxed value is given as
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3.2.3 Material Volume Fluxes

In a multi-material cell code, material volume fluxes must be determined from the cell
ume fluxes. For example, if a cell contains both air and water, an algorithm must be 
ated that can determine if the cell volume flux contains air, water or a combination of b
This requirement is driven by the lack of individual material velocity fields. Algorithms
determine material volume fluxes fall in the category of material interface reconstruc
ALEGRA is unique in that it contains not only the Simplified Line Interface
Construction12 (SLIC) algorithm but also a version of the high resolution algorithm, Sa
dia Modified Young’s Reconstruction Algorithm13 (SMYRA) for unstructured meshes.
The SLIC algorithm is only used in ALEGRA for comparisons with SMYRA.

The SMYRA algorithm is an adaptation of the original Young’s Material Interface Rec
struction Algorithm13. The SMYRA method offers the advantage of “second-order” pe
formance over other methods of tracking material interfaces in computational eleme
with mixed materials. By resolving the possible patterns of materials in the elements
rounding a donor element and dealing with each case on an ad hoc basis, the algor
allows modeling of interface planes that are not aligned with the directions associated
the normals to the element faces. Also the method allows a treatment of the order in w
materials should leave or enter a fluxing volume and thus allows a better representat
the spatial distribution of material in the neighborhood of the element. With the use o
SMYRA, objects may be moved across the computational domain with little dispersi
provided they are resolved sufficiently in the first place, i.e three to four elements ac
“thin” structures.

Application of SMYRA for unstructured meshes requires a significantly different sten
than for structured meshes. In both cases, the algorithm is applied in a one-dimensi
sense where fluxes on opposite faces are considered. This is a result of the one-dim
sional passes used in the remap step. For unstructured meshes, the SMYRA algorit
uses volume fractions from the upstream and downstream cells along with averaged
ume fractions at the vertices of the element. This is depicted in Figure 15 for a two-dim
sional grid. The vertex centered volume fractions are determined by averaging the ma
volume fractions from the surrounding element. From this stencil, SMYRA approxima
not only the order of the materials in a cell, but also the interfaces and their normals
between the materials. This information is then used by SMYRA to determine the mat
volumes constrained in the volume flux. The SMYRA algorithm has been shown in t
and three dimensions to be superior to the SLIC algorithm and thus is termed a high
lution interface reconstruction algorithm

A classical test of interface reconstruction algorithms is the “balls and jacks” problem
posed by McGlaun.14 This problem consists of pure advection of two jacks and two

f̃ i
f i

d svl

2
-----V ∆V– if slope1( )sgn+ slope2( )sgn=

f i
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spheres along a diagonal of a grid, as shown for two and three dimensional grids in Figur
through 17, respectively. As seen in Figure 16, one of the spheres is made up of concentric
of different materials. Both two dimensional and three-dimensional results of this problem
structured and unstructured meshes are described below.

3.2.3.1 Two-Dimensional “Balls and Jacks” simulations

In two dimensions, the balls are defined by circles and the jacks by crosses of material. F
18 through 19 show the final configurations for the balls and jacks problem for both the S
and SMYRA algorithms on a structured mesh consisting on 200 by 200 cells. As expecte
demonstrated in a number of hydrodynamic codes, the SLIC algorithm turns the balls into
squares and badly distorts the crosses. SMYRA on the other hand, preserves the ball co
tions and only slightly distorts the crosses. Figure 20 shows a very unstructured mesh cons
of almost 40,000 cells or approximately the same resolution as the structured mesh. This
was also used for the two-dimensional balls and jacks problem. Figures 21 through 22 de
strates the effect of these two algorithms used with the unstructured mesh. As one can se
SMYRA results are superior to the SLIC results. Also of interest is that both methods give b
solutions on the unstructured mesh than the structured mesh. This is an artifact of the fac
more cells are aligned in the direction of flow with the unstructured mesh.

3.2.3.2 Three-Dimensional Balls and Jacks

Figures 23 through 27 demonstrate the SLIC and SMYRA algorithms for structured and
unstructured meshes. The structured mesh consists of 100x100x100 cells and as expect
SLIC algorithm elongates the jacks and turns the balls into boxes. The SMYRA algorithm
serves the balls and only slightly distorts the crosses. The unstructured mesh was create
generating 282,000 tetrahedral elements and dividing each tetrahedral into four hexahedr
total of 1.1 million hexahedral - in effect the same resolution as the three-dimensional struc
mesh. As seen in two-dimensions, the SMYRA algorithm is superior to SLIC on unstructu
meshes. However, the amount of distortion caused by the SLIC algorithm is markedly less
the case with the structured mesh. This effect is due to the distribution of the orientation o
faces of the elements in this mesh and the smoothing effect that results on advected qua
Figure 27 provides some appreciation of the degree of non-orthogonality in the unstructure
mesh examples. In this “cropped” view of the computational space, the balls and one of t
jacks are seen extruding from the elements and the irregularity of the mesh is visible.

3.2.4 Material Variable Advection

Being a multi-material cell code, ALEGRA stores density, specific internal energy, rota
stretch, stress and state variables for each material that occupies a cell. All of these va
must be advected in the remap step for each material. One can debate what metric sho
used in advecting non-conserved quantities (ex. rotation), however, most agree that these
ties must be advected in order to preserve an accurate solution. ALEGRA allows all ma
variables to be advected with either mass or volume with the element-centered advection
ods described above being applied. In this procedure, variables remapped with volume a
cessed first, with density being the last variable remapped. Applying this order allow
1818
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material volume fluxes to be replaced with material mass fluxes. Next, variables rema
with mass are processed (ex. specific internal energy).

There are several subtle issues associated with material variable advection. The
process of density and specific internal energy is guaranteed to conserve mass and i
energy. However, the remap of material rotation and stretch can cause irregularities.
tion is an orthonormal tensor. Through the remap step, the tensor can deviate from
property. Care must be taken to return this tensor’s orthonormal property after the a
tion step. Stretch, on the other hand is symmetric positive definite (SPD) tensor. Nu
cal results have demonstrated that due to both round-off and application of a mixtu
first and second order advection stencils to the components of the tensor, a non-SP
sor can result. To date, the ALEGRA code has not developed a technique to return th
sor to SPD. The results of a non-SPD tensor can be devastating and thus a searc
correction to this feature continues. Lastly, care must be taken in advecting other var
that have special properties. For example, a parameter which can only be one or zer
remain one or zero after the advection.

3.2.5 Vertex Centered Advection

Vertex centered advection is very similar in concept to element centered advection a
required for advecting nodal quantities such as momentum. In vertex centered adve
two approaches can be used - staggered mesh or element based. Many authors hav
staggered grid or median like mesh. A staggered grid is developed by connecting th
ment and edge centers as shown in Figure 28 for a quadrilateral mesh. With this mes
nodal points are at the center of a volume formed by the staggered grid. This grid f
eight faceted polygons in quadrilaterals and thirty-two faceted polygons in hexahed
Although this approach is straight forward, it requires the calculation and advectio
quantities through each facet. For ALEGRA it was believed that this approach is too c
in memory and computational requirements.

The element based approach uses the fluxes already calculated for the elements a
the advection stencils already developed for the element based quantities. There ar
element based vertex centered advection methods in ALEGRA: Simplified AL15

(SALE), Half Interval Shift16 (HIS) and Modified HIS. All production calculations cur
rently use the HIS method, but all three of these methods will be described below.

The SALE method uses an averaging approach. Vertex centered values are average
element centers. These averaged quantities are advected and the newly advected
quantities are averaged back to the nodes. Although not used in ALEGRA, the SHA17

method improves on SALE by also advecting the derivative of the vertex quantity. Com
tationally, SALE is very inexpensive relative to staggered methods and HIS but is
monotonic and very diffusive. The SALE method is in ALEGRA for historical reaso
and is only used for verification problems in order to demonstrate the effects of less
rate methods.

ALEGRA’s production vertex centered advection scheme is Benson’s Half Interval S
algorithm16. Although Benson developed this scheme for logically rectangular grids
1919
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proved the method to be second order and monotonic, the method has been exten
ALEGRA for unstructured grids. The HIS method is very attractive because it uses th
frastructure developed for element centered quantities. The HIS method begins by c
ering vertex quantities for an element to be considered at the center of the element. T
shown in Figure 29. Each vertex quantity is then advected with the element centere
vection methods and the change in the vertex quantity is summed (assembled) at th
tex. The summed quantity,  is given as

(45)

wherene is the number of elements attached to a vertex. In applying this method, eac
ement can be processed in a finite-element approach, wherein all of an element’s ve
are processed and the result is assembled at the vertex. After all elements are proc
the new vertex value is given as

(46)

One of the difficulties in applying the HIS algorithm is determining the “correct” ahe
and behind values for Van Leer or SuperB advection schemes. The Modified HIS
rithm uses an element averaged value. This method, although easy to implement, ha
found to be much less accurate than the original HIS algorithm. In the original HIS a
rithm, a logically rectangular mesh automatically determines the upstream and d
stream vertices and thus the values to use in the second order advection schemes
unstructured mesh, the vertices and their values are less certain, since a vertex ca
any number of vertex neighbors.

In ALEGRA, the HIS algorithm has been applied by considering the upstream and d
stream elements and finding the vertices that lie along an edge with the vertex. Due
various element orientations that are produced by grid generation tools, these v
“neighbors” must be determined for each vertex along each edge, as shown in Figu
Due to memory concerns, ALEGRA finds these neighbors dynamically using the ele
neighbor information and face-node lists. This approach requires an insignificant am
of computation as compared to the second order advection calculation and great
proves the solution as compared to the Modified HIS method.

ALEGRA allows for vertex center quantities to be advected with mass or volume. In a
tion, in two-dimensional axisymmetric calculations, quantities can be advected with
element’s area. The choice of the advection weight depends on the quantity being a
ed and is generally chosen to conserve a global variable. For example, since momen
the product of mass and velocity, the advection of momentum is based on mass. Th
ensures that the DeBar’s consistency condition18 is satisfied. In simple terms, the DeBa
condition requires that uniform velocity remain unchanged by the advection algorithm
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3.2.6 Viper Shaped Charge

An example of the improved results that are delivered by the HIS advection scheme, a
posed to the Modified HIS scheme, can be seen in the simulation of a shaped charge
device, called a Viper shaped charge generator, consists of a conical copper liner sur
ed by high explosive (HE). The initial configuration of the model is shown in Figure
The HE is point detonated at the base of the assembly and the expanding detonation
causes the copper liner to collapse upon itself, resulting in a jet of molten copper b
ejected along the axis of the device. This problem was modeled with ALEGRA’s HIS
vection and the Modified HIS advection to explore the difference in the results. As ca
seen in Figure 31, even at a relatively early time of 35µs there is a distinct difference in
the length of the jet formed. By a time of 87.5µs, as shown in Figure 32, the difference i
length is about 5 cm. The base of the jet using the two models is very similar, so the lo
extension of the HIS-modeled jet accounts for the better agreement with data.
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4. Conclusion

The MMALE method developed in ALEGRA has proven to be a very robust approac
solving problems with large strain rates. This method has been extended beyond
physics and is currently used on simulations requiring magnetohydrodynamics, ele
statics and radiation transport. By using the concept of pseudo one-dimensional p
the traditional second order structured methods of interface reconstruction and ele
and vertex advection have been extended to unstructured grids. These algorithm
been shown to demonstrate second-order behavior on unstructured grids. However
still remains in effectively remeshing complex deformed boundaries.
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Nomenclature

ALE Arbitrary Lagrangian Eulerian

ALEGRA Arbitrary Lagrangian Eulerian General Research Applications code

ICF Inertial Confinement Fusion

MMALE Multi-Material ALE

SMALE Single-Material ALE

SMYRA Sandia’s Modified Youngs Reconstruction Algorithm

HIS Half Interval Shift

SLIC Simple Line Interface Construction
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Time Integration Loop
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Remap Controller
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Determine if nodes should be moved

Tag Nodes to be relocated

Tag Affected Elements and Nodes

Relocate Tagged Nodes

Determine Volume Fluxes for only Affected Elements

Process Material Fluxes for Single Material Affected Elements

Limit ALE Node movement
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Figure  1 Flowchart for MMALE package in ALEGRA
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Figure  2 Typical Four Element Configuration and Associated “Pointer” Tree.
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Figure  3 Node Behavior Under Various Node Type Scenarios
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Figure  5 Initial 10x10 Graded Mesh

Figure  6 Tipton Smoother at 10 cycles with 10 iterations per cycle
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Figure  4 Typical Quadrilateral Element and Associated Angle at the Reference N
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Figure  7 Tipton Smoothing with an ALE node set at Y=0 at 10 cycles with
iterations per cycle.

Figure  8 Tipton Smoothing with all ALE Boundaries.

Figure  9 Behavior of Interface Nodes in a Four SMALE Mesh at 10 cycles with
iterations per cycle.
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Figure  10 Behavior of Interface Nodes between a SMALE Mesh and three MMA
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Figure  11 Behavior of Interface Nodes between a EULERIAN Mesh and th
MMALE meshes.
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Figure  12 Three Dimensional Tipton Smoothing with inverse radius weighting
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Figure  13 The effect of one-dimensional passes in the advection stencil
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Figure  14 Advection Slopes for Second Order VanLeer Scheme
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Figure  15 SMYRA Advection Stencil - Required Volume Fractions for Donor Mate
Flux Determination

Figure  16 Two-Dimensional Ball and Jacks Initial Conditions
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Figure  17 Three-Dimensional Ball and Jacks Initial Conditions

Figure  18 Final State of SLIC solution of Two-Dimensional Ball and Jacks o
structured 40,000 cell grid
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Figure  19 Final State of SMYRA solution of Two-Dimensional Ball and Jacks o
structured 40,000 cell grid

Figure  20 An unstructured ~40,000 cell grid used with the two-dimensional Balls
Jacks examples.
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Figure  21 Final State of SLIC solution of Two-Dimensional Ball and Jacks o
unstructured ~40,000 cell grid with mesh shown.

Figure  22 Final State of SMYRA solution of Two-Dimensional Ball and Jacks o
unstructured ~40,000 cell grid.
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Figure  23 Final State of SLIC solution of Three-Dimensional Ball and Jacks o
structured 1 million cell grid.

Figure  24 Final State of SMYRA solution of Three-Dimensional Ball and Jacks o
structured 1 million cell grid.
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Figure  25 Final State of SLIC solution of Three-Dimensional Ball and Jacks o
unstructured 1.1 million cell grid.

Figure  26 Final State of SMYRA solution of Three-Dimensional Ball and Jacks o
unstructured 1.1 million cell grid.
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Figure  27 Final State of SMYRA solution of Three-Dimensional Ball and Jacks on
unstructured 1.1 million cell grid with the objects shown extruding from t
three dimensional mesh.
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Figure  28 Typical staggered grid for vertex centered advection
4040



Viper Shaped ChargeViper Shaped Charge
DRAFT
d1

d3d4

d2b1
b2

b3
b4

a1

a2

a3a4

d1

d3d4

d2

b1

b2

b3
b4

a1

a2

a3a4

B D
A

Given an advection mass,
∆MDA from D to A, each ver-
tex value is considered in
each element. In this picture
d2 = a1 etc.

Starting with Element D and
its first vertex d1, neighboring
vertices, b1 and a1 must be
determined for the advection
stencil. For unstructured
grids, this requires element
neighbor and orientation in-
formation.

∆MDA

∆MDA

d2

d3d4

d1

b2

b1

b3
b4

a2

a1

a3a4

∆MDA

-Γi Γi Using an element centered
advection stencil,Γi is deter-
mined and summed at loca-
tions d1 and a1. Next, position
2 is processed followed by the
remaining positions.

B D
A

∆MDA

Γ2

1
2

3

4

5

6

7

8

Γ5

Γ3 Γ6 Γ8

Γ7

After processing Element D,
new partial momenta have
been summed at the six glo-
bally numbered vertices in-
volved with the advection
mass∆MDA. This continues
until all elements have been
processed.

Figure  29 Steps in the Half Interval Shift algorithm for unstructured grids.
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Figure  30 Shape Charge Initial Conditions
4242



Viper Shaped ChargeViper Shaped Charge
DRAFT

arge
Figure  31 Comparison of HIS and MHIS Advection schemes for VIPAR Shape Ch
at 35µs.
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Figure  32 Comparison of HIS and MHIS Advection schemes for VIPAR Shape Ch
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